Thank you for purchasing a quality product from Monitor Technologies LLC. We realize that you do have a choice of vendors when procuring level measurement equipment and we sincerely appreciate your business!

This manual contains the information necessary to ensure a safe and successful installation. Please read and comply with the section of this manual pertaining to SAFETY. Doing so will ensure proper operation of the equipment and the safety of all personnel.

Before discarding shipping container, please inspect it thoroughly and verify that all parts ordered are accounted for. Sometimes smaller parts become stuck under carton flaps and other packaging materials.

In the event that information contained herein does not completely satisfy your requirements or answer your questions, you may contact Technical Support on our website www.monitortech.com, by telephone at 800-766-6486 (630-365-9403), or by e-mail at techsupport@monitortech.com. If your product ever requires service either in or out of warranty, please contact us and obtain an RMA number prior to shipping the unit to us.
The VibraRod™ vibratory sensor provides reliable point level detection in a wide variety of process control applications within the powder and bulk solids market. The vibrating probe principle overcomes application difficulties associated with changes in material, temperature, and humidity while providing reliable solid state electronic circuitry that requires no calibration.

The VibraRod has the ability to detect a wide range of material densities. In addition, using a single-prong probe eliminates the potential problems associated with material build-up and false signaling associated with the dual-prong “tuning fork” probes.

The VibraRod is available in a variety of configurations, each specifically designed to satisfy particular applications. Available configurations include: standard probe and pipe extension probe.

PRINCIPLE OF OPERATION

The VibraRod™ line of point level sensors is a mechanical resonance system that is excited at a resonance by an electrical circuit. Two piezoelectric crystals are mounted internally at the probe’s base. The electronic module generates an electrical signal that has an equivalent frequency to the probe’s resonant frequency; this signal is applied to one crystal, which causes the probe to vibrate. The vibration is monitored by the second crystal which provides an electrical signal back to the electronic module. When material contacts and surrounding the probe, the vibration is dampened and the signal from the second crystal is reduced. This signal reduction is detected by the electronic module, which reacts by providing a signal out of the module through the relay contacts.

PRE-INSTALLATION CONSIDERATIONS

Choosing a Location: (See Figure 1)

1) Material Flow: When selecting a location for the VibraRod™ level sensor, choose a point in the vessel where the probe will be out of the direct flow of incoming and outgoing material to prevent any mechanical damage that may be caused by the pressure of the flow (See section regarding Protective Baffles). The VibraRod sensor must be positioned at a point where incoming material will reach and cover the probe in its normal flow, and when receding, will flow away from the probe in an even manner. Choose a position where a majority of the probe (not just the tip) will be covered. This is particularly important when detecting materials with low bulk densities. If the target material to be sensed is a powder, the VibraRod sensor should be installed at an incline exceeding the angle of repose (for high level detection use vertical mounting) in order to prevent powder buildup/clinging that might substantially reduce the self-cleaning effect of the vibrating rod. Also, avoid mounting the VibraRod sensor in a recess (See Figure 2). In addition, material flow characteristics such as “rat holing” (caving) or “bridging” (arching) of the material in the vessel should be considered.

2) Vessel Interference: Select an area where the probe will not come in contact with internal structures of the vessel.

3) Vibration: CAUTION - The VibraRod should not be used in applications with severe vibration, such as being in close proximity to vibration devices used to promote material flow, as this could damage the probe.

4) Dynamic Material Flow: Please consider the maximum limits of bending force as shown in Figure 3 when choosing a mounting location and installing the VibraRod level sensor.

Also, note that the sensor may not reliably trigger / alarm unless covered by a static layer of material. Constantly moving matter may present an issue.
Protective Baffles: (See Figure 4)
The VibraRod is a sensitive level sensing instrument. Therefore, particular attention should be given to assure that the mechanical construction of the probe is not damaged by material. Probe deflection (bending) as little as 1/16" can render the probe inoperative. Failure to properly protect the probe will invalidate the warranty. Install a protective baffle above side mounted probes. The baffle can be created using a number of materials including angle iron, welded plates and pipe sections. It should be securely mounted to the vessel wall and should extend the full length of the probe. The lowest part of the baffle should be 4” to 6” above the upper edge of the probe.

Pipe Extension Reinforcement: (See Figure 6)
Mechanical reinforcement of the pipe extension should be considered whenever installing a probe length greater than 60” (1.5m). The pipe extension should be anchored to the sidewall with braces to reduce mechanical stress at the connection point of the extension and to protect the VibraRod from damage. When bracing, never weld or drill into the pipe extension since the electrical wires within the extension may be damaged. Use mechanical clamping techniques.

Bracing and Haz-Loc Pipe Extensions:
The integrity of pipe extension model warrants extra consideration when installing. On either top mounting or side mounting, one must consider the potential for material side-loading forces that could put increased strain on the pipe at the connection point and then install mechanical bracing as appropriate. Top-mount pipe extensions over 60” (1.5m) or side-mount pipe extensions over 18” (0.46m) should be considered for supplemental mechanical support.

Figure 4: Prevent mechanical damage.

Prior to installation, it is recommended that the VibraRod be tested for functionality on a sample of material (See Setup). The unit may not function with granular material where the particle size is large (1" [25 mm] diameter maximum) even though the bulk density is within the specified density range due to the potentially small surface contact between the material and the probe.

Figure 5: Prevent mechanical damage.

Figure 6: Pipe Extension Reinforcement
ELECTRICAL INSTALLATION

Hazardous Location Precautions:
Observe the regulations listed in the NEC (USA) or CEC (Canada) regarding equipment in hazardous locations when installing the hazardous location models of the VibraRod™ level sensor in hazardous classified locations. Wiring must be performed according to the authority having site jurisdiction and is the sole responsibility of the installer to ensure such.

It is important to note that the hazardous location models are certified with two protection concepts: The probes and wires from them to the enclosure is an intrinsically-safe circuit but is still Haz-Live. The enclosure and electronics within are not intrinsically-safe and protection is by dust-ignition proof enclosure.

Factory Wiring:
The probe wires internal to the housing are connected to the frontside of the PCB. **DO NOT** alter this connection. Doing so will likely cause improper operation of the sensor and likely permanent damage. (See Figure 7)

Permanently Connected Equipment:
Disconnecting devices shall be included in the system installation. In installations where multiple circuits are used (i.e. independent circuits for power input and relay output), individual disconnects are required. The disconnects shall be within close proximity of the equipment, accessible to operators, and marked appropriately as the disconnect for the associated circuit. Assure the disconnect ratings are appropriately sized to the circuit protected (See Specifications). The MAINS power that connects to the sensor MUST provide circuit protection and **NOT** exceed 30A total.

Circuit Separation (Standard version only):
Two cable entry locations are provided to aid in maintaining separation of “hazardous live” (typically mains voltages such as 115VAC and 230VAC) and limited circuits (typically control voltages less than 30Vrms or 42.5VDC). However, since the VibraRod sensor’s single wiring compartment can not absolutely protect against physical contact between multiple circuits, it is required that all wiring used must have an insulation rating of 300V minimum, and a temperature rating of 176°F (80°C) minimum.

Protective Earthing: 🌈
Each VibraRod level sensor is provided with a “protective conductor terminal” which shall be terminated to the local earth ground potential of the facility to eliminate shock hazard in the unlikely event of internal insulation breakdown. Select wire size that can carry in excess of the sum of all circuits maximum amperage.

1) **Remove** the housing cover to access the terminal blocks and operating mode switches. All wires must be routed through the conduit openings.

2) **Power Input:** (See Figure 7) The VibraRod sensor is provided with a HI / LOW voltage, AC/DC universal power supply. If using a DC power supply, polarity is irrelevant.

3) **Do not remove** the green wire from J1 MAINS terminal because it is an internal connection. For grounding the unit, either use the grounding screw terminal on the outside of the housing or use the internal grounding screw terminal on the circuit board (J1 MAINS). The earth ground screw should be connected to a quality “ground” to eliminate shock hazard.

4) **Output Contact Connections:** The SPDT relay contacts can be used to indicate whether or not material is being detected by the sensor within the vessel. These outputs are also influenced by the setting of the Fail-Safe switch (See Setup). The output contact(s) can be used to switch high voltage/high current loads as listed in the Specifications. Whenever possible, use an independent voltage source to operate the loads.

Select wire size that can deliver suitable voltage and current for the application. Follow all electrical codes and use proper wire gauge size. Tighten cable glands as well as housing cover after installation to ensure proper sealing for “Type 4X” environmental protection.

Conduit Entries: Conduit entry threads should be lubricated with a material such as lithium grease to ensure water ingress protection required to maintain the Enclosure “Type 4X” rating.

Material Density:
The SENSITIVITY selector should be set in accordance with the density of the target material:

- **Position A**, high sensitivity. For materials with density over 10.0–12.5Lbs/Ft³ (160–200kg/m³). Recommended for loose and light materials, greatest sensitivity of detection.
- **Position C**, low sensitivity position: For materials with density 18.7–21.8Lbs/ft³ (300–350kg/m³). Recommended for thick and heavy materials, least sensitivity of detection.

If the material to be sensed can potentially form heavy deposits on the probe, selection “LOW sensitivity” (Position “C”) should be chosen. This will provide additional immunity to product buildup while still enabling the circuit to sense the presence of material.
Fail-Safe (Selector “J4” in Figure 7):
Selection of the fail-safe mode (See Table 1) will permit
the output contacts to be triggered in a manner that
assures proper control of loads in the event of power fail-
ure. To obtain fail-safe operation, use the relaxed output
as an alarm, thus a power failure will also be considered
as an alarm. Depending on which condition is most criti-
cal to signal (high level or low level), the selection can be
made by positioning the switch to one of the following:

<table>
<thead>
<tr>
<th>POWER SUPPLY</th>
<th>FAIL-SAFE</th>
<th>PROBE</th>
<th>STATUS LED</th>
<th>RELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL</td>
<td>HI</td>
<td>No Material (Vibrating)</td>
<td>GREEN</td>
<td>Energized</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>Covered Material (Not Vibrating)</td>
<td>RED</td>
<td>Relaxed</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>No Material (Vibrating)</td>
<td>GREEN</td>
<td>Relaxed</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>Covered Material (Not Vibrating)</td>
<td>RED</td>
<td>Energized</td>
</tr>
<tr>
<td>FAIL</td>
<td>HI or LOW</td>
<td>Material or No Material</td>
<td>NOT LIT</td>
<td>Relaxed</td>
</tr>
</tbody>
</table>

Table 1

Troubleshooting

PROBLEM: Sensor will not sense material.

CAUSE/SOLUTION:
1) Verify power is applied to the sensor.
2) Verify sensor status by observing LED’s:
 GREEN = not sensed, RED = sense,
 no light = no power.
3) Verify sensitivity setting. Position sensitivity selection
 in position Highest Sensitivity “A” thereby making the
 probe more sensitive to “difficult to sense” materials.
4) Verify probe coverage when sensing is expected.
 The sensor is not designed to be “tip sensitive”.
 Permit significant probe coverage before expecting
 material sensing.
5) Verify electrical connections.

PROBLEM: Sensor remains in “DETECT” mode even
when material is absent.

CAUSE/SOLUTION:
1) Verify sensor status by observing LED’s:
 GREEN = not sensed, RED = sense,
 no light = no power.
2) Verify the probe is not in direct contact with any internal
 vessel structure. If so, reposition sensor.
3) Verify sensitivity setting. Position sensitivity selection
 in position Lowest Sensitivity “C” therefore making
 the probe less sensitive to “easy to sense” materials
 and more immune to material buildup.
4) Ensure there is no material buildup on probe.
 Product buildup across the probe surface or
 between the probe and vessel wall may create false
 detection. Clean probe if necessary.

PROBLEM: Output contacts perform opposite of
designations (N/O, N/C).

CAUSE/SOLUTION:
1) Check Table 1 for correct fail-safe switch selection.
 Swap wire terminations of N/O and N/C if necessary.
 Changing the fail-safe selection is not recommend-
ed unless fail-safe feature is not a concern to the
application.
MAINTENANCE

The **VibraRod™** level sensor is a maintenance-free product and should be serviced by Monitor Technologies LLC personnel only. If operation appears inappropriate, see the Troubleshooting section of this bulletin. If proper operation is not achievable, consult the factory.

MECHANICALS

DIMENSIONS ARE SHOWN IN INCHES WITH MILLIMETER EQUIVALENT IN BRACKETS

Standard Probe

Pipe Extension Probe

SAFETY

General Safety:

CAUTION! It is essential that all instructions in this manual be followed to ensure proper operation of the equipment and safety of operating personnel. Use of equipment in a manner not specified by the manufacturer may impair protection provided by the equipment. The use of this symbol is used within this manual to highlight important safety issues. Please pay particular attention to these items.

Electrical Shock Caution:
The VibraRod™ level sensor can be powered with HIGH VOLTAGE. No operator serviceable parts are inside. All servicing is to be performed by qualified personnel. Extreme care shall be taken if the unit's cover is removed and live electrical terminations are exposed. To avoid electrical shock, do not contact any exposed electrical connections. Each unit is provided with a “protective ground” connection, which shall be terminated to earth ground potential. This terminal shall be used to reduce shock hazard in the unlikely event of internal insulation breakdown.

EMC Emissions:
Meets: EN 61326-1: Electrical Equipment for Control Use, EMC.
EN 55011: Radiated and conducted emissions (Class A - industrial).

EMC Immunity:
EN 61000-4-2: Electrostatic discharge (industrial).
EN 61000-4-3: RF radiated EM fields (industrial).
EN 61000-4-4: Electrical fast transients (industrial).
EN 61000-4-5: Electrical surges (industrial).
EN 61000-4-6: RF conducted EM energy (industrial).
EN 61000-4-11: Voltage dips, short interruption and voltage variation immunity (industrial).

WARRANTY

Monitor Technologies LLC warrants each VibraRod™ to be free from defects in material and workmanship under normal use and service for two (2) years from the date of purchase. The purchaser must notify Monitor of any defects within the warranty period, return the product intact, and prepay transportation charges. The obligation of Monitor Technologies LLC under this warranty is limited to repair or replacement at its factory. This warranty does not apply to any product which is repaired or altered outside of Monitor Technologies’ factory, or which has been subject to misuse, negligence, accident, incorrect wiring by others, or improper installation. Monitor Technologies LLC reserves the right to change the design and/or specifications without prior notice.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Power Requirements:</th>
<th>22-27VDC (±10%); 22-232VAC (±10%), 50/60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Consumption:</td>
<td>≤ 4VA (AC); ≤ 3W (DC)</td>
</tr>
<tr>
<td>Altitude:</td>
<td>6562 ft (2000m) max</td>
</tr>
<tr>
<td>Installation Category:</td>
<td>II</td>
</tr>
<tr>
<td>Pollution Degree:</td>
<td>2</td>
</tr>
<tr>
<td>Process Temperature:</td>
<td>Standard Probe: -4˚ to 176˚ F (-20˚ to 80˚ C)</td>
</tr>
<tr>
<td></td>
<td>Pipe Extension Probe: -4˚ to 176˚ F (-20˚ to 80˚ C)</td>
</tr>
<tr>
<td></td>
<td>Ambient Temp (all units): -22˚ to 149˚ F (-30˚ to 65˚ C)</td>
</tr>
<tr>
<td>Output Relay:</td>
<td>VAC: SPDT isolated; 3A @ 250VAC max</td>
</tr>
<tr>
<td></td>
<td>VDC: SPDT isolated; 3A @ 30VDC max</td>
</tr>
<tr>
<td>Sensitivity:</td>
<td>A: 10.012.5lbs/ft³ (160200kg/m³)</td>
</tr>
<tr>
<td></td>
<td>B: 12.515.6lbs/ft³ (200250kg/m³)</td>
</tr>
<tr>
<td></td>
<td>C: 18.721.8lbs/ft³ (300350kg/m³)</td>
</tr>
<tr>
<td>Fail-Safe:</td>
<td>Switch Selectable: High or Low</td>
</tr>
<tr>
<td>Housing:</td>
<td>Powder coated die-cast aluminum; NEMA 4X, ENCLOSURE TYPE 4X, IP66</td>
</tr>
<tr>
<td>Process Connection:</td>
<td>1-1/4” NPT (VibraRod), 1-1/4” NPSC (Vessel)</td>
</tr>
<tr>
<td>Pressure Rating:</td>
<td>Standard Probe: 145psi (10bar)</td>
</tr>
<tr>
<td></td>
<td>Pipe Extension Probe: 145psi (10bar)</td>
</tr>
<tr>
<td>Conduit Connections:</td>
<td>1/2” NPT</td>
</tr>
<tr>
<td>Local Indicator:</td>
<td>Bi-color LED: Green = No material, Red = Material present, No light = No power</td>
</tr>
<tr>
<td>Probe Material:</td>
<td>Standard Probe: 304SS</td>
</tr>
<tr>
<td></td>
<td>Pipe Extension Probe: 304SS with 304SS 3/4” pipe, Max 6ft / 1.83m (Top Mount), Max 2ft / 0.61m (Side Mount)</td>
</tr>
<tr>
<td>Weight:</td>
<td>Standard Probe Version: Approx. 3.25 lbs (1.5 kg)</td>
</tr>
<tr>
<td>Approvals:</td>
<td>CSA, US/C: Ordinary Locations; Class II, Div. 1 & 2, Groups E, F, G; Class III Hazardous Locations with Intrinsically Safe Probe</td>
</tr>
<tr>
<td></td>
<td>ATEX: II 2D Ex tb [ia Da] IIIc T75˚C Db IECEx: Ex tb [ia Da] IIIc T75˚C Db (See Bulletin #554K regarding specific conditions of use.)</td>
</tr>
</tbody>
</table>

CE Mark
CHINA RoHS 2